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Abstract

This paper presents new algorithms for the rotation

of images. The primary design criteria for these al-

gorithms is very high quality. Common methods for

image rotation, including convolutional and separable

approaches, are examined and shown to exhibit signif-

icant high frequency aliasing problems. A new resam-

pling �lter design methodology is presented which min-

imizes the problem for conventional convolution-based

image rotation. The paper also presents a new sepa-

rable image rotation algorithm which exhibits improved

performance in term of reduction in artifacts and an

e�cient O(N2logN ) running time.

1. Introduction

Rotation is a very basic image processing operation.
Many applications, such as radiology and photographic
analysis, require very high quality image rotation. The
goal of the work presented here is e�cient image rota-
tion of the highest possible quality.

An image is de�ned, for the purpose of this paper,
as a discrete sampling of a continuous two-dimensional
function onto a square lattice. If an image is to be
rotated by � degrees, the sample points of the rotated
image fall between the original image lattice points.
The sampling theorem provides a basis for the recon-
struction of the continuous function which the image
samples represent (This assumes that the original im-
age was band-limited by the Nyquist frequency in both
dimensions. If this is not the case the aliased compo-
nents have become a part of the continuous image the
samples now represent, so this issue can be disregarded
in this discussion) [2]. The sampling theorem also pro-
vides a basis for the resampling of this continuous func-
tion on the new, rotated, lattice. The combination of

reconstruction and resampling allows for high accuracy
rotation of images.

In realizable systems the reconstruction and resam-
pling �lters can be combined. This leads to compu-
tations for the new sample points based on discrete
convolution. The computed sample is a weighted sum
of the samples in a �nite neighborhood of the lattice
point, as described in [5, 11] in the more general con-
text of image warping. The work presented herein will
give a basis for the design of correct convolution �lter
kernels for image rotation.

Convolution-based rotation is very costly computa-
tionally. Quality is dependent upon the size of the
interpolation kernel [8, 9], increasing as the kernel size
increases with maximum quality when the kernel size
is as large as the image. For an N � N image and
an M �M convolution kernel M2 multiply operations
must be performed for each of the N2 pixels of the im-
age. For the highest quality,M ! N , tending towards
a running time of O(N4). This problem was recognized
in early image rotation papers such as [10, 3]. These
and later papers show that if the rotation can be de-
composed into operations only on rows and columns of
the image the operations can employ 1-D convolution
rather than 2-D convolution. These decompositions are
referred to as separable image rotations.

Two-pass separable image rotation reduces rotation
to two scale and skew operations. The �rst operation
reduces image resolution, thereby decreasing image res-
olution in intermediate images[3, 10, 5]. This decrease
in resolution is referred to as bottle-necking and results
in loss of high frequency content. Three-pass decom-
positions, as presented in [4, 9], implement rotation
using only skew operations and no scaling. While sig-
ni�cantly higher quality than the two-pass techniques,
these approaches still introduce signi�cant aliasing, as
demonstrated in this paper.



Figure 1. Rotated spectrum. The spectrum
of an image has been rotated 45 degrees.
The corners of the spectrum (shown dimmed
here) extend beyond the Nyquist frequency,
folding back into the sides as shown.

2. Convolution-Based Rotation

Convolution-based rotation is the simplest form of
rotation. No intermediate images are required and
the rotation algorithm is trivial (given a �lter ker-
nel). The process of resampling is described in detail in
[7]. Brie
y, the continuous image is reconstructed from
the sample points and resampled at the rotated lattice
points. The resampling process must low-pass �lter
the rotated image to remove frequencies beyond the
Nyquist frequency in each dimension. Since no scaling
occurs, at �rst glance it would appear that frequency
characteristics are unchanged since the image is not
magni�ed or mini�ed as discussed in [11]. However,
rotation of an image induces an equivalent rotation of
the spectrum of the image[6]. As shown in �gure 1,
spectral content in the corners of an image can rotate
beyond the Nyquist frequency.

Assuming frequency characteristics such that no
aliasing occurs, only an interpolation �lter would be re-
quired. Interpolation kernels approximate a box �lter
as closely as possible. Indeed, [9, 11] spend consider-
able time discussing alternative �lter kernels. However,
this approach causes corner aliasing due to the fact that
the frequency response of the reconstructed continuous
image will be a rotated square.

A solution to this problem is to account for this fold-
back when resampling the image. A �lter kernel is con-
structed which not only interpolates, but also �lters
o� the components which would be rotated beyond the
Nyquist frequency bounds. A simple method for con-
structing this �lter kernel is to compute the inverse
Fourier transform of the multiplication of two box �l-
ters A(u; v) and B(u; v) such that A(u; v) represents
the interpolation �lter and B(u; v) is a box �lter ro-
tated by ��. This is simply computed using an inverse

FFT.

An ideal �lter of this formwould require in�nite sup-
port. Since in�nite support is not practical, the �lter
must be truncated, which induces Gibbs oscillations[1].
In our experimentation we have employed a simple
Hamming window with good results.

While simple to understand, convolution-based im-
age rotation has problems, the worst being its com-
putational complexity. Given an N�N image and an
M�M �lter kernel, rotation requires O(N2M2) time.
Another serious problem is that a �lter kernel is com-
puted for a given resampling location relative to adja-
cent pixels. For any given o�set �x;y a new �lter ker-
nel must be computed. The �lter kernel computation
is costly so most practical implementations compute
a subset of �lter kernels and store these in a lookup
table[11]. This approach still requires computing a con-
siderable number of �lters (which may consume a large
amount of space) and the �lters represent quantized
approximations of the true sampling points.

3. Separable Rotation

Separable image rotation decomposes the rotation
into operations which only involve rows or columns of
the image. A three-step decomposition consisting of
only skew operations as described in [5, 9]:

R(�) =

�
cos� �sin�

sin� cos�

�
=

�
1 �tan�=2
0 1

�

�

�
1 0

sin� 1

�
�

�
1 �tan�=2
0 1

�
(1)

The operations necessary to perform the skew con-
sist only of row or column shifts. In this case, a �xed
shift �r is applied to each row (or column). Figure 2 il-
lustrates the rotation of an image using this three-pass
approach.

The three pass approach induces interesting spec-
tral e�ects which contribute to errors in the resulting
image. In order to understand what occurs when an
image undergoes three part separable rotation, the fol-
lowing theorem is required.

Theorem 1 If f(x; y) has the Fourier transform

F (u; v), then f(x � �y; y) has the Fourier transform

F (u; v + �u).

Proof: The proof of this theorem is straight-forward
using the substitutions �(s; t) = s + �t for x and
 (s; t) = t for y:



Figure 2. Three pass separable image rota-
tion. The top left image is the original image.
Steps proceed in a clockwise order through
the figure. Arrows illustrate the skew opera-
tion.

Ff(x� �y; y) =

=

Z Z
1

�1

f(x � �y; y)e�j2�(ux+vy)dxdy

=

Z Z
1

�1

f(s; t)e�j2�(us+(v+u�)t)
���� 1 �

0 1

���� dsdt
= F (u; v+ �u) (2)

Corollary 1 If f(x; y) has the Fourier transform

F (u; v), then the inverse Fourier transform of F (u; v+
�u) is f(x � �y; y).

This theorem and corollary states that a skew of �
in one dimension of an image is equivalent to skew of
the spectrum of that image by �� in the other dimen-
sion. Hence, each step in a separable image rotation is
also inducing skew in the spectrum of the image. The
problem is that the spectrum of a square image is also
square (without loss of generality, images will be as-
sumed to be square in this discussion). The spectrum
following the skew will no longer be square, but rather
a parallelogram which will not �t in the square bounds
enforced by the sampling theorem.

An ideal skew operation of a sampled image is equiv-
alent to sampling the continuous image after skew. The
various approaches to skew realization work this way
in that they compute the interpolated point between
adjacent pixels necessary to perform the skew. The
image is assumed band limited prior to the skew, so
the points of the parallelogram after the skew induce

Figure 3. Aliasing after skew.

Figure 4. Spectral shuffling. Only half of the
spectrum areas are labeled. The remaining
areas are symmetrical.

aliasing in the image as illustrated in �gure 3. This
aliasing occurs in every step of the rotation process.
Figure 4 illustrates the spectral shu�ing which occurs
after a 3-pass rotation of 45 degrees.

It is expected that some components of the spectrum
will need to be masked o� if the image is to be alias-
free. This is due to the fact that a diamond spectrum is
now to be �t into a square shaped hole. This could be
easily dealt with using post-�ltering. However, the two
grayed slivers in �gure 4 are within the valid spectral
bounds and are an obvious error condition, so simple
post-�ltering of the image will not correct these aliased
components. Basically, this is an incorrect shu�ing of
the spectrum.

Figure 5 illustrates an in-place rotation of an image.

Figure 5. Spatial shuffling.



The sliver in question is quite obvious. Spatially, the
solution seems obvious: simply pad the image width
to avoid the loss of content in the �rst rotation step.
The width must be padded by a multiplicative factor
of 1 + tan2(�=2) to avoid loss. However, padding an
image spatially expands the image spectrum. Hence,
an approach might be to take an FFT of the padded
image, pad it again by a factor of 1+ tan2(�=2). Given
that FFT operations will be used, the �rst pad may
double the size of the image to reach a multiple of two.
If the second padding must be inverted using an inverse
FFT, again a double in size will occur. The �nal result
will be 16 times as much image data.

The algorithm presented below provides a solution
to this problem. The image padding is performed twice
as mentioned before, but only one dimension is padded
at each step.

4. Rotation Algorithm

Let N be the image size and � a rotation angle such
that �90� � � � 90�. N 0 is a usable FFT size greater
than N+Ntan2(�=2). N 00 is a usable FFT size greater
than N�2.

1. The image is widened to N 0 wide and N 00=2 tall,
padding around the image with black.

2. An FFT is performed on all rows of the image.
3. The rows are multiplied by exp(�j2�n�=N 0),

where � represents the appropriate shift of the row nec-
essary to implement a skew of �tan�=2.

If an inverse FFT were performed on the rows at
this point, the result would be an image after the �rst
skew operation. The algorithm needs to now perform a
two-dimensional FFT on the image. Since the Fourier
transform is separable and one part of the transform is
already done, there is no need to inverse transform the
rows.

4. An FFT is performed on the columns. At this
point the data is equivalent to a 2D FFT of the entire
widened image including the �rst skew step.

5. The image is doubled to N 00 vertically. The �rst
widening preserved spatial information which would
have been lost. This second widening preserves spec-
tral information. The widening process replicates im-
age content above and below rather than padding with
zeroed spectrum. The aliased components remain, but
the spectrum widening copies back what was shifted
into aliasing before.

6. An inverse FFT is performed on the rows.
7. The rows are multiplied by exp(j2�n�=N 0),

where � represents the appropriate shift of the column

necessary to implement a skew of �2sin�. The dou-
bling is required because the image height is halved

(doubling spectrum height halves spatial height).
8. An FFT is performed on the image rows.
This operation is equivalent to the second skew in

the three pass rotation. That skew is a column skew in
the spatial domain. The algorithm performs a negative
row skew in the spectral domain, which is equivalent.

9. Window functions are applied to the spectral
representation to remove the components which will be
aliased. (These can be removed since they do not mix
with existing frequencies, but rather shu�e to holes left
by the skew process). The spectrum to be retained at
this point is in the shape of a parallelogram with the
corners clipped o�.

10. An inverse FFT is performed on the columns.

11. The third pass skew is implemented by multiply-
ing the columns by exp(j2�n�=N 00), where � represents
the appropriate shift of the row necessary to implement
a skew of (tan�=2)=2.

At this point the intermediate image is equivalent to
a dual padded �nal image after FFTs have been applied
to rows only. The vertical content is band limited due
to the earlier masking process.

11. An inverse FFT is performed on the image rows.

12. The image is decimated vertically by discarding
every other sample, then cropped to its original size.

This algorithm is fully separable and has a running
time of O(N2logN ) for anN�N image. It also uses the
exact same number of forward and inverse 1-D FFTs
(three sets) as the SEP3-sinc algorithm described as
the highest quality in [9]. This complexity is similar
to three 2-D FFT operations (1.5 times the time to
forward and inverse FFT the entire image).

This algorithm is based on the use of the Fourier
shift property described in [2] and the shift technique
described in [9]. To shift a row by �, the FFT of the
row is taken, the transform coe�cients are multiplied
by exp(�j2�n�=N ), e�ectively adjusting the phase of
the components. Then the inverse FFT is taken. In
many cases the algorithm leaves the result in the FFT
state. The algorithm also takes advantage of Theorem
1 to decrease the number of FFT operations.

The Fourier shift property is well known and dis-
cussed in most basic texts. It is trivial to show that,
given a simple sign change in the proof of the shift
property, an inverse shift property can be shown. The
inverse property is used to shift a line of the spectrum.
A shift of � of the spectrum can be computed by simply
performing an inverse FFT, multiplying each sample sn
by exp(j2�n�=N ), and reapplying the FFT.

Given a real image, the algorithm produces a real
image as a result. This is due to the fact that, though
complex operations are performed on the image and
much of the rotation is done in the complex domain, all



intermediate images are equivalent to those produced
by the spatial only three pass approach up to the re-
moval of the aliased components.

5. Experimental Results

Testing rotation algorithms is not a simple propo-
sition. Ground truth data for non-trivial rotation of
an image usually does not exist. One approach that
has been taken is to rotate by some angle, then rotate
back. This is actually a poor test because the scram-
bling of the spectrum in the rotation is exactly undone
by the reverse rotation. The test approach utilized in
this paper is to perform two successive 45 degree rota-
tions and compare to an image rotated 90 degrees using
a trivial pixel remapping. (Even this technique is not
ideal, since the intermediate 45 degree image rotation
will clip corners of the spectrum. However, this prob-
lem only serves to in
ate errors on the tests. Hence,
actual quality is somewhat higher.) A more ideal test
technique would utilize synthetic images which can be
generated at any rotation angle. Such a test is under
development, but was not ready for presentation with
this paper.

Three images were used for testing: Peppers, Lena,
and Photographer. For each image an ideal rotation
of 90 degrees was generated and compared to rotations
using the three pass separable rotation of [9] (referred
to as SEP3-sinc in that paper) and the three pass sep-
arable rotation algorithm in this paper. The images
were padded with black for SEP3-sinc. The technique
detailed in this paper includes its own padding tech-
nique. Results for these images are listed in Table 1.
For each image the peak signal-to-noise ratio and the
mean squared error for the image is illustrated.

These results exhibit signi�cant decreases in distor-
tion relative to the previous approach. The remaining
distortion can be attributed to several factors. The
error results were computed on 8 bit binary images
rather than the intermediate 
oating point image in
the algorithm, so there is some expected quantization
error yielding a ceiling of 54dB PSNR. Also, some nu-
merical inaccuracies due to roundo� in computations
are to be expected. Finally, the implementation used
for this test used a simple rectangular �lter for masking
alias components. This �lter will exhibit Gibbs oscil-
lations. A windowing �lter such as a Hamming �lter
will probably yield even better results.

6. Summary

This paper presents solutions very high quality im-
age rotation including the de�nition of alias free convo-

Test SEP3-sinc New
Image PSNR MSE PSNR MSE

Lena 40.58 5.69 44.52 2.29

Peppers 40.14 6.30 45.49 1.84

Photographer 40.21 6.20 44.41 2.36

Table 1. Experimental Results

lution rotation kernels as well as a new three-pass sepa-
rable image rotation algorithm. The paper also demon-
strates aliasing issues of common approaches to image
rotation including both convolution and conventional
three pass separable image rotation, demonstrating sig-
ni�cant aliasing of high frequencies in those techniques.
The more powerful FFT based separable algorithmpre-
sented herein is alias free and achieves a running time
of O(N2logN ) for an N � N image.
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