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Convolution-B ased Interpolation for 
Fast, High-Quality Rotation of Images 

Michael Unser, Senior Member, IEEE, Philippe ThCvenaz, and Leonid Yaroslavsky 

Abstract-This paper focuses on the design of fast algorithms 
for rotating images and preserving high quality. The basis for 
the approach is a decomposition of a rotation into a sequence of 
one-dimensional translations. As the accuracy of these operations 
is critical, we introduce a general theoretical framework that 
addresses their design and performance. We also investigate 
the issue of optimality and present an improved least-square 
formulation of the problem. This approach leads to a separable 
three-pass implementation of a rotation using one-dimensional 
convolutions only. We provide explicit filter formulas for several 
continuous signal models including spline and bandlimited repre- 
sentations. Finally, we present rotation experiments and compare 
the currently standard techniques with the various versions of 
our algorithm. Our results indicate that the present algorithm in 
its higher-order versions outperforms all standard high-accuracy 
methods of which we are aware, both in terms of speed and 
quality. Its computational complexity increases linearly with the 
order of accuracy. The best-quality results are obtained with the 
sinc-based algorithm, which can be implemented using simple 
one-dimensional FFT's. 

I. INTRODUCTION 
HERE are certain applications, such as radiology or T digital photography, that require images to be rotated with 

the greatest possible care in order to preserve the integrity of 
the data. As it turns out, the quality of a rotation algorithm 
is directly related to the order of accuracy (to be defined in 
Section 11) of the underlying interpolation model. Zero and first 
order approaches (nearest neighbor and bilinear interpolation) 
are extremely simple to implement but tend to produce images 
with noticeable artifacts (blocking or smoothing) Ill. More 
satisfactory results can be obtained using small-kernel cubic 
convolution techniques (piecewise cubic model) [2]-[4]. or 
bicubic spline interpolation [ 5 ] ,  which is nonlocal but still 
manageable computationally because of the availability of 
fast algorithms [6]. Unfortunately, such nonseparable methods 
become impractical for higher-order models because of the 
increase of the size of the local neighborhood that needs to 
be considered and the complexity of the corresponding 2-D 
interpolation formulas. 
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One way to get around this problem is to decompose the 
rotation into a sequence of 1-D transformations along the z and 
y directions, which leads to a separable implementation. This 
makes it possible to use signal models of much higher order 
as in the standard (nonseparable) case, while at the same time 
reducing the amount of computation. There are several such 
decompositions that have been described in the literature and 
that can provide the starting point for a high-quality rotation 
algorithm. 

Two-pass algorithms are typically based on the following 
decomposition of a rotation matrix [7]-[9]: 

s inQ COSQ t an0  l/cosO 
cos8 - s ing]  = [ 1 

1 cos8 -s in0 
1 

where the first and second terms represent 1-D shearing 
and expansiodcontraction transformations along the y- and 
z-axes, respectively. This particular factorization can be ad- 
vantageously exploited for hardware implementations [ 1 o], 
including DSP. It is also well-suited for dealing with very 
large images, since the data need to be accessed only one 
row (or column) at a time [ l l ] .  Its main drawback is that it 
requires some intermediate signal contraction, which not only 
complicates the implementation but also introduces errors. 
Even if aliasing can be prevented by an appropriate spectral 
shaping, there is nonetheless a loss of high spatial frequencies 
that becomes more pronounced for larger angles. This effect is 
most detrimental at 45" since the image needs to be reduced 
by a factor d. This observation was first made by Friedmann, 
who proposed to correct the problem by using an additional 
resampling pass to increase the sampling rate of the image 
before rotation [SI. This augmented version gives rise to 
a three-pass algorithm, but it is not the most efficient one 
because it still requires scaling. 

In fact, there is a factorization that requires no scaling at 
all and that appears to have been discovered independently by 
several authors [12]-[14]. It is given by 

L J L  J 

The whole transformation can be decomposed in an appro- 
priate sequence of 1-D signal translations that can all be 
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Fig. 1. Illustration of the three-pass rotation algorithm. (0) Original image; (1 )  shearing along the .?-axis; (2) shearing along the !/-axis; (3) final shearing 
along the .?-axis, which yields the rotated image. 

implemented via simple convolutions. It suggests the three- 
pass implementation of a rotation illustrated in Fig. 1. Each 
elementary transformation in (2) corresponds to a shearing 
of the image in the :r or y direction. The processing is one- 
dimensional in nature since each row (resp., each column) is 
simply translated by an offset = -?I. t,an 0/2 (resp., Ay = 
:I: . sin B )  that is proportional to its vertical (resp., horizontal) 
coordinate. The advantage of the second factorization over the 
first one is that the determinant of each of the elementary 
matrices in (2) is one, indicating that all areas in the image 
are preserved throughout the transformation process. This 
property suggests that this approach should better preserve 
higher spatial frequencies. Because the method requires no 
signal rescaling, it is much easier to implement. 

For these reasons, we have chosen to base our approach 
on the second decomposition, which allows us to rotate an 
image using 1-D translations only. Our main focus in this 

paper will be the issue of rotation quality and the design 
of algorithms that are more accurate than those that have 
been previously reported. Most of the paper will be devoted 
to analyzing the proper way of translating a discrete one- 
dimensional signal, since this fundamental operation needs 
to be performed at least three times. For this purpose, we 
will introduce a general theoretical framework for the design 
and analysis of convolution-based interpolators. We will also 
relate the order of accuracy of an interpolator to the spectral 
characteristics of the underlying generating function. 

For a given interpolation model, we will consider two 
different approaches for the design of translation operators. 
The first uses direct resampling, while the second minimizes 
the error between the ideal signal translation and its approxi- 
mation within the given function space. After having dealt with 
these theoretical concerns, we will experimentally compare the 
outcome of the direct implementation of an image rotation 
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(that is, with full 2-D interpolation) versus the two- and three- 
pass implementations. In the process, we will try several 
types of interpolation schemes and provide a performance 
assessment. 

A. Notations and Operators 
L2 is the space of measurable, square-integrable, real-valued 

functions s(x)..r E R. L.2 is a Hilbert space whose metric (the 
L2-norm) is derived from the inner product 

+:x 

s( :r ) r (.e ) d : ~ .  ( 3 )  

Two examples of L2-functions that will be used are rtrct, ( 2 : )  

(the symmetrical unit rectangular pulse) and sin(. ( : I , )  = 
siu (..e)/( T X ) .  

l 2  is the vector space of square-summable sequences (or 
discrete signals) ~ ( k ) .  k E Z. Square brackets are used to 
represent sequences that are obtained from the sampling of a 
L2-function; i.e., .s[k] := s(:r)I,=k. The convolution between 
two sequences and h is denoted by h * ~ ( k ) .  The sequence 
b ( k )  can be viewed as a discrete convolution operator (or 
digital filter) that is applied to the signal (I E l 2 ,  and is 
characterized by its transfer function B ( z )  = Cktz h ( k ) ~ - ~ .  
Such a filter defines an invertible convolution operator from 
12 into itself if and only if there exist two strictly positive 
constants 711 and hf such that 

(4) 

This condition insures the existence and stability of the inverse 
filter. which we denote by 

.II, (.(:C). T(T)), = 

'1ri 5 p ( f : J q 2  .= M .  

( b ) - ' ( k )  A l /R(%) .  ( 5 )  

11. CONVOLUTION-BASED INTERPOLATION 
The important feature of the three-pass rotation procedure 

is that it involves one-dimensional translations only. Since the 
approach requires two intermediate steps, it is essential that 
the translations be performed with the greatest possible care. 
In order to address this issue, we introduce a general theoretical 
framework that is well-suited for the design and analysis 
of such operators. We also provide detailed implementation 
formulas for a variety of continuous signal models. The key 
practical result is that the corresponding translation opera- 
tors can be computed by means of simple one-dimensional 
convolution operations (digital filter). 

A. Design and Implementution of the Translation Operator 
Let s ( x )  E L2 represent a function of the one-dimensional 

continuous variable :I' and TA: L2 -+ L2 denote the one- 
dimensional translation operator by A; i e., T ~ s ( . c )  = s(.~. - 
A).  If one starts with a sequence of samples s [ k ]  E I 2  ~ the most 
natural way to implement TA is to determine an interpolation 
model s ( : I ; )  such that .s[k] = s ( :e ) l r=k  and then resample 
the translated version of this function. A general approach 
to constructing such interpolants is to consider the class of 
functions generated from the translates of a single function 

y ( ~ )  [15]. The corresponding function space V(cp) c L:! is 
defined as 

k € Z  

The only restriction on the choice of the generating function 
cp is that the set {cp(.r - k ) } k , z  is a Riesz basis of V(cp); this 
is equivalent to the condition 

A 5 1 q W  + 27rk)12 5 B a.e. (7) 
k E Z  

where @ ( U )  is the Fourier transform of (P(.T), and where A and 
B are two strictly positive constants. This constraint insures 
that each function s ( x )  in V(p) is uniquely characterized by 
the sequence of its coefficients c ( k ) .  

Assuming that these coefficients are known, the sampled 
version of our translated signal can be evaluated through the 
following convolution 

( T A s ) [ k ]  = c(l)cp(k - A - I )  = bA * ~ ( k )  (8) 
1 t Z  

where the digital filtering kernel ba is the resampled version 
of TAY: i.e. 

h l ( k )  := (p(k - A) A B A ( ~ )  = 1 cp(k - A)zPk.  (9) 
k € Z  

To implement this formula, we also need to evaluate the 
expansion coefficients of the function s( .T)  E V(cp) that 
interpolates s [ k ] .  It can be shown that this interpolation 
problem has a unique solution if and only if &(e3&) = 
BA=o( cJ") satisfies the stability condition (4). Moreover, this 
solution can be obtained very simply by digital filtenng 

(10) s [k]  = S( .T ) I ,=k  H c ( k )  = (bo)- '  * s [ k ]  

where the inverse filter is given by 

k E Z  

This result also provides the impulse response of the corre- 
sponding interpolator 

which is an important descriptor of the algorithm. Since 
(12) implies that CkEz aInt(u + 27rk) = 1, the function 
ylllt E V(p)  takes the value one at the origin and is zero 
for all other integers (interpolation property). Obviously, the 
prefiltering step in (10) can be avoided if cp already has this 
property (i.e., cp = cplnt). 

The whole computational procedure, which is equiv- 
alent to a single convolution with the translation filter 
f l ( l c )  := (plnt(k - A) = b A  * ( b ~ ) - ' ( k ) ,  is summarized in 
Fig. 2(a). If cp is compactly supported, it is usually more 
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Fig. 2. Block diagram of a digital filter-based translation operator: (a) imple- 
mentation in the signal domain: (b) implementation in the frequency domain 
(sinc-interpolator), 
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As shown in the Appendix, condition (13) can be rewritten in 
the equivalent form 

The key to the proof is then to identify these sums as 
the periodization of the functions zn'pEt(~) and recall that 
this operation corresponds to a sampling in the frequency 
domain. Taking the Fourier series of (14) and ( 1  5 ) ,  we get the 
equivalent frequency domain interpretation of these constraints 

advantageous to evaluate the translation in the spatial domain. 
In this case, b~ is a finite impulse response (FIR) filter, and 
(bo)- '  is an all pole infinite impulse response (IIR) filter, 
which can usually be implemented using the fast recursive 
technique described in [ 161. 

B. Order of Accuracy 
The quality of an interpolator will depend on its abil- 

ity to reproduce all polynomials up to a certain degree n. 
This maximum degree provides the order of the interpolator 
N = n + 1, which, in the convention of approximation 
theorists, is one more than the degree. It turns out that this 
property has a relatively simple interpretation in the frequency 
domain, a result that deserves to be better publicized for signal 
processing. 

Proposition I :  An interpolator with generating function (o 

will reproduce all polynomials up to degree N - 1 if and 
only if +(U) is nonvanishing at the origin and has zeros of at 
least multiplicity N at all nonzero frequencies that are integer 
multiples of 27r. 

This result was first described by Schoenberg in his land- 
mark paper on splines [17]. It also plays a crucial role in 
the characterization of the approximation power of certain 
finite element methods [ 181 (Strang-Fix conditions), and more 
recently, in the theory of the wavelet transform (191. We 
have chosen here to present our own version of the proof, 
which uses rather standard signal processing concepts and also 
provides some further insights into the interpolation process. 

Specifically, the condition for an Nth order interpolation 
is that there exists a certain function pCt E V(cp) (not 
necessarily unique) such that 

V T E  R. C k n p ~ t ( ~ - k ) = ~ 7 ' . n  = 0  :... N - 1 .  
k € Z  

(13) 

In other words, cpz, provides an exact interpolation formula 
for all polynomials of degree lesser or equal to n = N - 1. 

where S ( k )  denotes the discrete unit impulse. The condition 
in Proposition 1 then follows directly from the fact that 
@ $ ( U )  = C ( e J w ) @ ( w )  where C(eJw) is 2~-periodic, since 
pt:t E V(p)  by definition. Conversely, if @(U) has the 
required properties, it is always possible to construct a function 
cp:+(s) = Er(k )cp (~  - k )  that also satisfies the additional 
( N  + 1) linear constraints for w = 0. An example of such 
a function is the interpolator defined by (12), but there are 
also many other ones since (13) is only a quasi-interpolation 
requirement (i.e., up to order N ) .  

For N = 1, the required condition is (14). The short- 
est possible function that satisfies this constraint for all 5 

is obviously rcct ( T ) .  The most direct way of obtaining a 
function that satisfies the condition in Proposition 1 is then to 
convolve rect (z) with itself an appropriate number of times. 
This simple construction scheme yields the E-spline of degree 
n. This is optimal in the sense that it has the shortest support 
for the given order of accuracy. 

With an Nth order interpolator, we have at least the insur- 
ance that the signal models prior and after translation are in 
agreement over the AV first terms of their Taylor series. Hence, 
it is possible to recover the original sequence s [ k ]  from its 
translated version ( TAS) [k]  within an O(h  ") precision, where 
the step h 5 $ corresponds to the distance of A to the nearest 
integer. 

C. Specific Interpolation Models 
Let us now consider some examples. 

Piecewise linear model ( N  = 2): In this case, the 
generating function cp is the tent function (or B-spline 
of degree 1) 

otherwise, 

and no prefiltering is necessary. The corresponding first 
order translation filter t h ( k )  = D1(k - A) can be 
implemented with two multiplications and one addition 
per input sample. 
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TABLE I 

16 SLKCESFIVE R o r ~ r i o u s  ob 22 5' EACH (FULL CIRCLE. ROT~TION) 
CObIPARlhOh Ob T H b  VARIOUS ALGORITHMS IY TERMS OF RMs ERROR AFTFR 

CPU time 

(16 mtaoons) 
Algorilhm M"lT8, Lenna C,rclcr 

h'on-separohie 

INT~O ( n e a  neighbor1 17 4372 ? I  1785 709194 3r 

INT~I  Ibilineal I4 2957 19 3504 69 YO67 5s 

INT~Keys 7 34571 12 8394 56 8U26 42s 

INT-3 (cubic spline) 5 26271 9 74491 34 6474 435 

Three-pus, seporuhle 

SEP3-I (=/a) 16 6941 21 0507 70 5951 ss 
SEP3-3 (=/SI) 5 85241 10.437 423718 7s 

SEP3-5 4 48279 8 13631 23 0364 1 1 s  

SEP3-7 (=ir3) 191884 7 i m n  150174 14s 

SEP3-ssnc 442176 6 20881 4 15621 31s 

lw+pur  separable. 

SEP2-IsO 14 791 19.7454 70 1329 1 Is 

SEPLlsl 5 55867 10.2907 3n 7047 21s 

SEP2-lrl 4 33042 n 20193 207148 61s 

Keys' cubic interpolant ( N  = 3 ) :  The cubic interpolation 
function proposed by Keys is given by (cf. [4]) 

( a  + 2)121" - ( a  + 3)1:c12 + 1. 0 5 / 5 (  < 1 
P < ~ ( . X )  3 = 0 4 4 3  - ~l . i ;12  +  XI:^ - 4) .  1 5 /;rI < 'L 

2 5 i;rl. 
(19) 

Although this function is piecewise cubic, the order of the 
corresponding interpolator is only N = 3 for the optimal 
choice a. = - $. and less otherwise. The good news is 
that no prefiltering is necessary. 
Cubic spline model ( N  = 3 ) :  The generating function 
for cubic spline interpolants is the cubic B-spline which 
is given by 

{ O. 

2 / 3  - 1 . ~ 1 ~  + 14'/2. 0 5 1:rI < 1 
/P((.) = ( 2  - IxI)"/c. 1 5 I:rI < 2 (20) { 0, 2 5 131. 

This formula can be used to evaluate the postfilter 
b i ( k : )  = [ j 3 ( k :  - A ) .  which has at most four nonzero 
coefficients. The corresponding inverse filter is 

By decomposing it into a cascade of first-order causal and 
anticausal exponentials, it can be implemented recursively 
with two multiplications and two additions per input 
sample [6]. 
Polynomial splines of degree n ( N  = 17, + 1): We can 
also construct higher-order polynomial spline interpolants 
by choosing ~ ( x )  = fin(.). where /Y is Schoenberg's 
central B-spline of degree n [17]. This function is usually 
constructed from the (n+ 1)-fold convolution of rect (x). 
An equivalent definition that is more useful for the 
evaluation of b;(Ic) = [?" [k - A] is 

0. 

0. 

0. 

0 .  

.f 
0 0 . 5  1 1 . 5  

Fig, 3 .  Frequency responses of various interpolators with increasing orders of 
accuracy. (1) Piecewise linear; ( 2 )  small kernel cubic; (3) cubic spline; (7) 
spline of order 7. 

where ( ; E ) +  = max (0, x).  In this case, 1)L has at most 
(11 + 1) nonzero coefficients. The most efficient way 
to implement the corresponding inverse filter (b;)-' is 
to use the recursive algorithm described in [16]; that 
reference also contains explicit filter formulas for R = 
0, . . .7 (cf. Table I). With this technique, an nth degree 
translation ( n  odd) can be implemented with as few as 
2 n  multiplications and 2n - 1 additions per sample point. 
Bandlimited model ( N  i cm): For p(x) = siiic ( .T) ,  

V(p)  corresponds to the class of bandlimited functions 
considered in Shannon's sampling theorem [20]. It is 
worth noting that these interpolants can also be interpreted 
as splines of infinite order [21]. In this case, (ho ) - '  is the 
identity and the translation filter is tz ( k : )  = sinc ( k - A).  
To evaluate its transfer function, we start by writing 
the Fourier transform of the continuous-time function 
sinc:(.r - A ) : @ ~ ( w )  = c-jWArcrt  (w/27r) .  We then 
express the effect of sampling in the Fourier domain, 
which yields 

T,"(cJU) = 1 @?(U + 2 ~ k )  = F I d A .  (23) 
k E Z  

Note that this result is consistent with the shift property 
of the Fourier transform. Because of the slow decay 
of the interpolation kernel, the filter is most effectively 
implemented in the Fourier domain, as illustrated by the 
block diagram in Fig. 2(b). 

The frequency responses of these various interpolators are 
represented in Fig. 3. Note how the flatness of the response at 
the origin and the attenuation in the higher-frequency band 
improve with the order N .  The reason for the superiority 
of cubic spline interpolation over the small kernel cubic 
convolution method is also quite apparent from this graph. 

111. LEAST-SQUARES DESIGN OF THE TRANSLATION OPERATOR 

The translation method that we describe next uses the same 
interpolation models as before, but, instead of simply resam- 
pling, it computes the orthogonal projection of the translated 
function T ~ s ( r )  in V(p).  For the given interpolation model, 
this is the optimal way to discretize the translation operator 
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because it minimizes the &.-error between the exact translation 
and its approximation in V(p) (least-squares solution). The 
resulting approximation is then represented by its sample 
values, which provide a full characterization (cf. (10)). We 
will see that this approach performs better than the previous 
resampling scheme, which was not explicitly designed to 
minimize the error. 

Specifically, let PIT denote the orthogonal projection opera- 
tor onto V(cp). The least-squares approximation of TAs(x) in 
V(cp) can be expressed as (cf. [15]) 

where the CA's are obtained from the L2-inner product be- 
tween the function to be approximated and corresponding dual 
analysis function 

and that it can therefore also be implemented using the general 
procedure described in Section 11-A. In general, the least- 
squares solution will result in a higher-order interpolation. In 
particular, if cp is a B-spline of degree n then cpls(x) is the 
cardinal (or fundamental) spline of degree 2n + 1 [22]; the 
least-squares solution therefore corresponds to a polynomial 
spline interpolation of degree 2n + 1 (i.e., twice the order). 

It is clear that the interpolation and least-squares solutions 
are identical for the bandlimited case because sinc*sinc ( x )  = 
sinc (x). Moreover, the translation operation with this particu- 
lar model is error-free because T~s(x) remains in the original 
approximation space (shift-invariance property). Other related 
aspects of the optimality of bandlimited representations are 
discussed in [23]. 

In general, the least-squares solution for a particular space 
V(cp) will get us one step closer to the optimal sinc solution. 
Specifically, if we start with ( P O ( T )  = cp(x) and iterate the 
least-squares solution over and over again then the resulting 
interpolating function cpz(x) = (P,T_~ * will converge 
to sinc (r) as n = 2% goes to infinity. This general convergence 
result comes as a corollary of Theorem 9 in [15]; it holds for 
any starting function cpo under two relatively mild conditions: 
(1) cPo(w) = O(lwl- ' )  for some r >  $, and (2) Vw E 

(25)  

unique in the 

cA(k) = (TAs(z), &(x - IC))- 

The dual generating function 
sense that it satisfies the biorthogonality condition 

E v(cP) 

(cp(x - k ) ,  &(x - I ) )  = S[k - I ] .  

Next, we introduce the auxiliary function Iv.  RESULTS AND DISCUSSION 

where cp'(x) = cp(-r). We then use the formula Tas(r )  = 
CIEz r(Z)cp(r - A - I ) ,  and rewrite (25) as 

rA(k) = c(Z)(cP(x - A - I ) ?  a x  - k ) )  (28) 
1EZ 

or, equivalently 

c ~ ( k )  = c(Z)pl,(k - A - 1) = tk * ~ ( k )  (29) 
1€Z 

where t g ( k )  = cpl,(k - A).  Finally, by combining this result 
with (10) and discretizing (24) at the integers, we get 

(P\.TAS)[k] = b" * .A(k) = bo * t: * @")-I * s [k]  
= t; * S[k]  (30) 

where the term bo(k)  represents the sampled version of the 
basis function in (24). What remains after simplification is the 
convolution of s [ k ]  with the digital filter t z .  Further, this result 
can also be interpreted as an interpolation formula 

(PVTA.$)[kI = s[qcpls(x - l)l,=k-A (31) 
I €  z 

where we note that cpl,(x) is a true interpolation function (i.e., 
cpl,[k] = 6 [ k ] ) ;  a property that follows directly from (26)). 

What this derivation effectively shows is that the least- 
squares solution for the translation in V(cp) is equivalent to an 
interpolation in the space V(cpl.$) = V ( p T  * &) = V(pT * cp), 

A. Experimental Setting 
The various interpolation models in Section 11-C were 

compared in their efficiency for implementing the three-pass 
image rotation algorithm (SEP3) described in the introduction. 
All computations were performed in floating point, and the 
intermediate results were stored in real format to minimize 
the effect of round-off errors. The final rotated images were 
all truncated to the nearest integer. In all cases, the one- 
dimensional translation filtering was performed in place, using 
periodic boundary conditions. All spline-based translations for 
SEP3-n, n E { 1 . 3 , 5 , 7 } ,  were evaluated in the spatial domain 
according to the procedure outlined in Fig. 2(a). The sinc- 
based translation for SEP3-CO = SEP3-sinc was implemented 
in the Fourier domain using a special version of the FFT 
algorithm for real signals (cf. Fig. 2(b)). 

For comparison, we also implemented our own version of 
the two-pass rotation algorithm (SEP2) using various spline 
models. The difficulty with this approach is that the first pass 
involves a spatial signal contraction by a factor 1/ cos 0,  which 
may introduce aliasing artifacts if it is not done properly. 
To minimize these errors, we performed the various 1-D 
geometrical transformations using the least-squares rescaling 
algorithm described in [24]. We found this approach to be 
superior to a simple interpolation. In fact, the improvement 
is at least as good as that obtained by switching from an 
nth degree spline interpolation to a 2n + 1 degree model in 
the simple translation case (cf. Section 111). The versions of 
the two-pass algorithm that were implemented are the least- 
squares solutions for piecewise constant, linear, and cubic 
spline signal models (SEP2-lCsn,, n E (0, I ,  3 ) ) .  
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Several standard nonseparable rotation algorithms (INT-n) 
were also included in the comparison. The corresponding 2-D 
interpolation formulas for computing the value of the image 
at location ( x , g )  are all of the form 

kn+L-1  I n + L - I  

s(z, y) = "E 'E c (k ,  E)cp(x - k)cp(y - I )  (32) 
k=k, l = l a  

where IC0 and lo are the nearest integer truncation of (x - L / 2 )  
and ( y - L / 2 ) ,  respectively. The explicit equations for cp for the 
bilinear (INT-1 with L = 2), short kernel cubic (INT-keys with 
L = 4), and cubic spline models (INT-3 with L = 4) are (18), 
(19) with a = -1/2, and (20), respectively. Note that such a 
nonseparable interpolation requires at least L2 multiplications 
and L2 additions per pixel, plus the cost of the evaluation of 
values of the basis functions themselves, which may in fact be 
the most demanding task, especially for higher-order models 
(e.g.. n. + 1 multiplications and n additions for evaluating a 
polynomial of degree n). In the case of the cubic spline, the 
procedure also included a two-dimensional prefiltering step to 
pre-compute the cubic B-spline coefficients of the image [6]. 

In our experiments, we used three 256 x 256 test images: 
Murray (Fig. 6), who is an occasional collaborator, Lena (who 
is not), and circles (Fig. 7). The concentric circle pattern was 
generated by sampling a radial chirp-like cosine function with 
a period that increases linearly from the center (T,,,in = 2) to 
the periphery (T,,,,, = 4). Although this pattern is circularly 
symmetric, it poses a challenge for most rotation algorithms 
because it contains many high frequencies. 

B. Results 
First, we conducted a series of back and forth rotations at 

various angles and computed the residual root mean square 
error on the 128 x 128 central portion of the image to factor 
out boundary effects. The results of these experiments are 
displayed in the graphs in Fig. 4. The results for Lena (which 
are not included) were qualitatively very similar to those 
for Murray. As expected, the performance of all algorithms 
improves as a function of the degree n. Near-perfect rotation 
is achieved by the three pass FIT algorithm (SEP3-sinc); 
in this case, the residual error is entirely due to roundoff 
effects (integer truncation). SEP3-7 is also very competitive 
and essentially outperforms all other procedures. For a given 
degree n, the nonseparable algorithm (INT) tends to perform 
better than the corresponding separable algorithms (SEP2 
and SEP3), although this advantage is not as significant 
for higher orders (n  = 3). Also note that the two-pass 
algorithm progressively loses its efficiency with increasing 
angles, whereas the performance of both nonseparable (INT-n) 
and three-pass separable (SEP3-n) algorithms is hardly angle- 
dependent at all. This serious flaw of SEP2 can be explained 
by the fact that the transformation is unable to retain all high- 
frequency information because of the signal compression by 
cos6 that occurs during the first pass. 

Although the back and forth rotation experiment illustrates 
our point, it does not necessarily provide a good indication 
of the quality of the rotated image itself. For instance, the 
INT-0 algorithm, which performs a mere data shuffling, is 

-C INT-3 - SEPB-1 
-c SEP3-3 - SEP3-7 
-SEP3-sinc - A- - SEP2-LSO - m- - SEPZ-LSl 

0 10 20 30 40 50 

degrees 
(b) 

Fig. 4. Residual error as a function of the angle 8 for various rotation 
algorithms: (a) for the image Murray shown in Fig. 6; (b) for the circle 
pattern shown in Fig. 7. 

perfectly reversible with an RMS error of zero. At the other 
extreme, the SEP3-sinc algorithm also turns out to be perfectly 
reversible because the sinc-translation is lossless and the three- 
pass factorization (2) is symmetrical. In other words, the 
sequence of transformations for a rotation by -6 is exactly 
the inverse of that for a rotation by 8. This property has been 
verified experimentally with images stored in floating point 
format. 

To get a better idea of the effect of a single rotation, we 
chose to concentrate on the circularly symmetric circle pattern, 
which has the advantage of providing its own rotated reference. 
Fig. 5 provides a visual comparison of the performance of the 
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I NT-0 

INT-  1 I NT-K 

SEP3-3 SEP3-7 

Fig. 5.  Examples of  rotations by 37' of a circular symmetric pattem and the corresponding absolute value of the error amplified by a factor of two. The 
reference 128 x 128 region of interest is shown on the upper left comer. The corresponding Rh4S error values are: E = 40.09 for INT-0, E = 23.66 
for INT-1, F = 13.40 for INT-Keys. f = 9.24 for SEP3-3, and E = 4.31 for SEP3-7. 

various algorithms in the case of a single rotation; it displays 
both the central portion of resulting images rotated by 37" and 
the absolute value of the difference with the original circle 
pattem. This example also provides a good illustration of the 
type of artifacts that may result from the use of the standard 
(low accuracy) INT-0 and INT-1 methods. 

To obtain an even more challenging benchmark, we con- 
sidered the cumulative effect of 16 successive rotations of 
s / 8  each, at the end of which the image is back in its initial 
position. Some examples of results are shown in Figs. 6 and 
7. Table I provides a detailed performance comparison of the 
various algorithms, including the total CPU time on a Silicon 
Graphics SGX workstation. The results are quite dramatic 
and emphasize the type of artifacts (blocking and smoothing) 
introduced by lower-order methods. The circle pattern also 
permits a direct visualization of the loss of high-frequency 
information that typically occurs in the center of the image (cf. 
Fig. 7). This series of experiments clearly demonstrates-both 
qualitatively and quantitatively-the superiority of the high- 
accuracy methods (SEP3-n.n > 3. and SEP3-sinc). Note 
that the small cubic kemel method (INT-Keys), which is 
usually considered one of the best available methods [3], 
does not score particularly well by comparison. It has one 
of the highest computational costs and is outperformed by 
most of the newer methods presented here. Even in its own 

category, it is more advantageous to use the nonseparable 
cubic spline interpolation (INT-3), which has approximately 
the same complexity but has one more order of accuracy 
(cf. Section 1I.B). This result clearly shows the relevance of 
the optimality property of B-splines (shortest support for a 
given accuracy); this feature is especially important in the 
nonseparable case where the cost of the evaluation of the 
B-spline coefficients (prefiltering) is almost negligible. The 
SEP3 algorithms are all extremely competitive in terms of 
their computational efficiency. At the lower end, SEP3-3. 
which is nearly as efficient as INT-3, is almost as fast as 
bilinear interpolation (INT- 1). In summary, the three-pass 
procedure does usually provide better-quality pictures with 
fewer computations. 

V. CONCLUSION 
In this paper, we have presented a general formulation and 

analysis of convolution-based interpolation techniques. We 
have applied those results to the design of high-quality three- 
pass rotation algorithms. We have also presented a detailed 
evaluation of these algorithms and a comparison with the 
standard methods. The advantageous features of the present 
approach as applied to this particular task are as follows: 

Simplicity: Image rotations can be performed in an en- 
tirely separable fashion using one-dimensional convo- 
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Fig. 6. Example of results after 16 successive rotations of 22.5" each. The displayed region of interest is enlarged by a factor of two using simple pixel 
replication. (a) Original image (Murray) with the 128 x 128 region of interest: (b) nonseparable nearest neighbor rotation (INT-0); (c) nonseparable bilinear 
rotation (INT-1); (d) nonseparable short cubic rotation (INT-Keys); (e )  three-pass seventh order spline rotation (SEP3-7); (f) three-pass sinc rotation (SEP3-sinc). 

lutions only; this property simplifies both the design 
and the implementation. Separability turns out to be a 
significant advantage for hardware implementation and 
parallelization. It also facilitates the processing of very 
large images since the memory requirements can be 
limited to one column or one row at a time. 
EfJiciency andjexibility: The approach is extremely fast 
and can achieve any desired degree of accuracy by 
increasing the order of the interpolator. For polyno- 
mial spline models up to degree 7, the convolutions are 
most efficiently computed in the spatial domain. The 
highest-quality image rotations are obtained with the sinc 
interpolator, which can be implemented using FFT's. 
Even in this limiting case, the algorithm is substantially 
faster than most nonseparable small kernel interpolation 
methods. 
Performance improvement: The approach is especially 
advantageous for performing high-quality image rotations 
using higher-order interpolation models ( n  2 3).  Its 
complexity increases linearly with the degree O ( n )  ~ while 
the conventional nonseparable interpolation approach re- 
quires O(n,2) to O(n3)  operations per pixel, depending 
on whether or not one includes the cost of the evaluation 
of the basis functions. Another important factor is that the 
difference in quality between the two approaches becomes 

less and less significant for higher-order models. In other 
words, we get the best computational improvement for 
the highest-quality results. 

APPENDIX 
In this Appendix, we formally prove the equivalence be- 

tween (13) and (14)415). For this purpose, we consider the 
term 

E(. - k)"cp;,(. - k) 
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Fig. 7. Examples of image displays after 16 successive rotations of 22.5’ each. From upper left to bottom right: (a) original 256 x 256 circle pattern; 
(b) nonseparable nearest neighbor rotation (INT-0); (c) nonseparable bilinear rotation (INT- 1); (d) nonseparable short cubic rotation (INT-Keys): (e) 
nonseparable cubic spline rotation (INT-3): (f) three-pass cubic spline rotation (SEP3-3): (g) three-pass seventh-order spline rotation (SEP3-7); (h) three-pass 
sinc rotation (SEP3-sinc). 

Since the first term is simply the development of ( x  - T ) ~ .  

we end up with the relation 
This last identity is then used to establish the equivalence 
between (13) and (14)-(15) by working our way up from 
71 = 0 to Iv - 1. 
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